Islet Brain 1 Protects Insulin Producing Cells against Lipotoxicity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Islet Brain 1 Protects Insulin Producing Cells against Lipotoxicity

Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 express...

متن کامل

Stearoyl-CoA Desaturase-1 Protects Cells against Lipotoxicity-Mediated Apoptosis in Proximal Tubular Cells

Saturated fatty acid (SFA)-related lipotoxicity is a pathogenesis of diabetes-related renal proximal tubular epithelial cell (PTEC) damage, closely associated with a progressive decline in renal function. This study was designed to identify a free fatty acid (FFA) metabolism-related enzyme that can protect PTECs from SFA-related lipotoxicity. Among several enzymes involved in FFA metabolism, we...

متن کامل

Mitochondrial catalase overexpression protects insulin-producing cells against toxicity of reactive oxygen species and proinflammatory cytokines.

Insulin-producing cells are known for their extremely low antioxidant equipment with hydrogen peroxide (H(2)O(2))-inactivating enzymes. Therefore, catalase was stably overexpressed in mitochondria and for comparison in the cytoplasmic compartment of insulin-producing RINm5F cells and analyzed for its protective effect against toxicity of reactive oxygen species (ROS) and proinflammatory cytokin...

متن کامل

Triglyceride accumulation protects against fatty acid-induced lipotoxicity.

Excess lipid accumulation in non-adipose tissues is associated with insulin resistance, pancreatic beta-cell apoptosis and heart failure. Here, we demonstrate in cultured cells that the relative toxicity of two common dietary long chain fatty acids is related to channeling of these lipids to distinct cellular metabolic fates. Oleic acid supplementation leads to triglyceride accumulation and is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Diabetes Research

سال: 2016

ISSN: 2314-6745,2314-6753

DOI: 10.1155/2016/9158562